Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3081, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38594279

RESUMEN

Tactile sensation and vision are often both utilized for the exploration of objects that are within reach though it is not known whether or how these two distinct sensory systems combine such information. Here in mice, we used a combination of stereo photogrammetry for 3D reconstruction of the whisker array, brain-wide anatomical tracing and functional connectivity analysis to explore the possibility of tacto-visual convergence in sensory space and within the circuitry of the primary visual cortex (VISp). Strikingly, we find that stimulation of the contralateral whisker array suppresses visually evoked activity in a tacto-visual sub-region of VISp whose visual space representation closely overlaps with the whisker search space. This suppression is mediated by local fast-spiking interneurons that receive a direct cortico-cortical input predominantly from layer 6 neurons located in the posterior primary somatosensory barrel cortex (SSp-bfd). These data demonstrate functional convergence within and between two primary sensory cortical areas for multisensory object detection and recognition.


Asunto(s)
Neuronas , Tacto , Ratones , Animales , Neuronas/fisiología , Tacto/fisiología , Interneuronas , Reconocimiento en Psicología , Corteza Somatosensorial/fisiología , Vibrisas/fisiología
2.
Cereb Cortex ; 33(7): 3715-3733, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36017976

RESUMEN

Pyramidal cells of neocortical layer 2/3 (L2/3 PyrCs) integrate signals from numerous brain areas and project throughout the neocortex. These PyrCs show pial depth-dependent functional and structural specializations, indicating participation in different functional microcircuits. However, whether these depth-dependent differences result from separable PyrC subtypes or whether their features display a continuum correlated with pial depth is unknown. Here, we assessed the stimulus selectivity, electrophysiological properties, dendritic morphology, and excitatory and inhibitory connectivity across the depth of L2/3 in the binocular visual cortex of mice. We find that the apical, but not the basal dendritic tree structure, varies with pial depth, which is accompanied by variation in subthreshold electrophysiological properties. Lower L2/3 PyrCs receive increased input from L4, while upper L2/3 PyrCs receive a larger proportion of intralaminar input. In vivo calcium imaging revealed a systematic change in visual responsiveness, with deeper PyrCs showing more robust responses than superficial PyrCs. Furthermore, deeper PyrCs are more driven by contralateral than ipsilateral eye stimulation. Importantly, the property value transitions are gradual, and L2/3 PyrCs do not display discrete subtypes based on these parameters. Therefore, L2/3 PyrCs' multiple functional and structural properties systematically correlate with their depth, forming a continuum rather than discrete subtypes.


Asunto(s)
Neocórtex , Corteza Visual , Ratones , Animales , Células Piramidales/fisiología , Fenómenos Electrofisiológicos , Corteza Visual/fisiología
3.
Curr Biol ; 32(8): 1743-1753.e7, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35276098

RESUMEN

The functional properties of neocortical pyramidal cells (PCs), such as direction and orientation selectivity in visual cortex, predominantly derive from their excitatory and inhibitory inputs. For layer 2/3 (L2/3) PCs, the detailed relationship between their functional properties and how they sample and integrate information across cortical space is not fully understood. Here, we study this relationship by combining functional in vivo two-photon calcium imaging, in vitro functional circuit mapping, and dendritic reconstruction of the same L2/3 PCs in mouse visual cortex. Our work reveals direct correlations between dendritic morphology and functional input connectivity and the orientation as well as direction tuning of L2/3 PCs. First, the apical dendritic tree is elongated along the postsynaptic preferred orientation, considering the representation of visual space in the cortex as determined by its retinotopic organization. Additionally, sharply orientation-tuned cells show a less complex apical tree compared with broadly tuned cells. Second, in direction-selective L2/3 PCs, the spatial distribution of presynaptic partners is offset from the soma opposite to the preferred direction. Importantly, although the presynaptic excitatory and inhibitory input distributions spatially overlap on average, the excitatory input distribution is spatially skewed along the preferred direction, in contrast to the inhibitory distribution. Finally, the degree of asymmetry is positively correlated with the direction selectivity of the postsynaptic L2/3 PC. These results show that the dendritic architecture and the spatial arrangement of excitatory and inhibitory presynaptic cells of L2/3 PCs play important roles in shaping their orientation and direction tuning.


Asunto(s)
Inhibición Neural , Corteza Visual , Animales , Dendritas , Ratones , Inhibición Neural/fisiología , Neuronas/fisiología , Células Piramidales/fisiología , Corteza Visual/fisiología
4.
Neuron ; 109(15): 2457-2468.e12, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34146468

RESUMEN

Segregation of retinal ganglion cell (RGC) axons by type and eye of origin is considered a hallmark of dorsal lateral geniculate nucleus (dLGN) structure. However, recent anatomical studies have shown that neurons in mouse dLGN receive input from multiple RGC types of both retinae. Whether convergent input leads to relevant functional interactions is unclear. We studied functional eye-specific retinogeniculate convergence using dual-color optogenetics in vitro. dLGN neurons were strongly dominated by input from one eye. Most neurons received detectable input from the non-dominant eye, but this input was weak, with a prominently reduced AMPAR:NMDAR ratio. Consistent with this, only a small fraction of thalamocortical neurons was binocular in vivo across visual stimuli and cortical projection layers. Anatomical overlap between RGC axons and dLGN neuron dendrites alone did not explain the strong bias toward monocularity. We conclude that functional eye-specific input selection and refinement limit convergent interactions in dLGN, favoring monocularity.


Asunto(s)
Lateralidad Funcional/fisiología , Cuerpos Geniculados/citología , Células Ganglionares de la Retina/citología , Visión Binocular/fisiología , Vías Visuales/citología , Animales , Cuerpos Geniculados/fisiología , Ratones , Células Ganglionares de la Retina/fisiología , Vías Visuales/fisiología
5.
Nat Protoc ; 13(6): 1275-1293, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29748648

RESUMEN

In vivo two-photon calcium imaging provides detailed information about the activity and response properties of individual neurons. However, in vitro methods are often required to study the underlying neuronal connectivity and physiology at the cellular and synaptic levels at high resolution. This protocol provides a fast and reliable workflow for combining the two approaches by characterizing the response properties of individual neurons in mice in vivo using genetically encoded calcium indicators (GECIs), followed by retrieval of the same neurons in brain slices for further analysis in vitro (e.g., circuit mapping). In this approach, a reference frame is provided by fluorescent-bead tracks and sparsely transduced neurons expressing a structural marker in order to re-identify the same neurons. The use of GECIs provides a substantial advancement over previous approaches by allowing for repeated in vivo imaging. This opens the possibility of directly correlating experience-dependent changes in neuronal activity and feature selectivity with changes in neuronal connectivity and physiology. This protocol requires expertise both in in vivo two-photon calcium imaging and in vitro electrophysiology. It takes 3 weeks or more to complete, depending on the time allotted for repeated in vivo imaging of neuronal activity.


Asunto(s)
Señalización del Calcio , Separación Celular/métodos , Microscopía Intravital/métodos , Neuronas/fisiología , Imagen Óptica/métodos , Animales , Ratones , Biología Molecular/métodos , Coloración y Etiquetado/métodos
6.
J Neurosci ; 34(20): 6843-8, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24828638

RESUMEN

Sound encoding is mediated by Ca(2+) influx-evoked release of glutamate at the ribbon synapse of inner hair cells. Here we studied the role of ATP in this process focusing on Ca(2+) current through CaV1.3 channels and Ca(2+) homeostasis in mouse inner hair cells. Patch-clamp recordings and Ca(2+) imaging demonstrate that hydrolyzable ATP is essential to maintain synaptic Ca(2+) influx in inner hair cells via fueling Ca(2+)-ATPases to avoid an increase in cytosolic [Ca(2+)] and subsequent Ca(2+)/calmodulin-dependent inactivation of CaV1.3 channels.


Asunto(s)
Adenosina Trifosfato/metabolismo , Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Sinapsis/metabolismo , Animales , Señalización del Calcio/fisiología , Células Ciliadas Auditivas Internas/citología , Hidrólisis , Transporte Iónico/fisiología , Ratones , Fosforilación
7.
Nature ; 461(7268): 1274-7, 2009 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-19865170

RESUMEN

Magnetic compass information has a key role in bird orientation, but the physiological mechanisms enabling birds to sense the Earth's magnetic field remain one of the unresolved mysteries in biology. Two biophysical mechanisms have become established as the most promising magnetodetection candidates. The iron-mineral-based hypothesis suggests that magnetic information is detected by magnetoreceptors in the upper beak and transmitted through the ophthalmic branch of the trigeminal nerve to the brain. The light-dependent hypothesis suggests that magnetic field direction is sensed by radical pair-forming photopigments in the eyes and that this visual signal is processed in cluster N, a specialized, night-time active, light-processing forebrain region. Here we report that European robins with bilateral lesions of cluster N are unable to show oriented magnetic-compass-guided behaviour but are able to perform sun compass and star compass orientation behaviour. In contrast, bilateral section of the ophthalmic branch of the trigeminal nerve in European robins did not influence the birds' ability to use their magnetic compass for orientation. These data show that cluster N is required for magnetic compass orientation in this species and indicate that it may be specifically involved in processing of magnetic compass information. Furthermore, the data strongly suggest that a vision-mediated mechanism underlies the magnetic compass in this migratory songbird, and that the putative iron-mineral-based receptors in the upper beak connected to the brain by the trigeminal nerve are neither necessary nor sufficient for magnetic compass orientation in European robins.


Asunto(s)
Migración Animal/fisiología , Magnetismo , Orientación/fisiología , Pájaros Cantores/fisiología , Visión Ocular/fisiología , Animales , Vuelo Animal/fisiología , Sistema Solar , Nervio Trigémino/fisiología , Percepción Visual/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...